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From steady to chaotic solutions in a di�erentially heated
cavity of aspect ratio 8
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SUMMARY

A splitting method is used for the temperature and the velocity–pressure unknowns to solve the time-
dependent thermal convection problem in an 8:1 enclosure (International Journal for Numerical Methods,
this issue). High performance is obtained by means of incomplete Cholesky conjugate gradient for the
temperature equation on one hand and a multigrid procedure for Navier–Stokes equations on the other
hand. The approximation is achieved by second- and third-order �nite di�erences on staggered grids.
The stability of the steady solution is analysed by the computation of the �rst Lyapunov exponent. The
periodic �ow at Ra=3:4×105 is widely discussed and some investigations have been done for some
higher Rayleigh numbers. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has become possible to compute solutions of complex �ows in a di�erentially heated cavity,
especially in two dimensions. By increasing the Rayleigh number it is thus quite easy to give
a qualitative behaviour of the solutions from steady state to chaos. An important question is
the accuracy of the computed solutions or in other words the quantitative meaning of these
solutions.
In this paper, the determination of the critical Rayleigh number corresponding to the loss

of stability of the steady solution to the bene�t of a periodic solution is �rst achieved. There
are at least two ways to verify the stability of a steady solution. The �rst one requires us to
compute the eigenvalues or some eigenvalues of the matrix of the linearized problem in the
neighbourhood of the steady solution. This is done successfully in References [1; 2] despite the
huge amount of computation needed. The second approach used in this paper is rather direct,
it consists in computing the �rst Lyapunov exponent by solving the linearized system. This
corresponds to seeing asymptotically how a solution normalized at initial time goes to zero
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when the time goes to in�nity. Lyapunov exponents are usually computed using a long-time
direct simulation which can be achieved with the same code used for the direct simulation of
the non-linear problem. The convergence is very fast for low Rayleigh numbers and becomes
slower in the neighbourhood of the critical Rayleigh number. Just above the critical Rayleigh
number a non-skew-symmetric periodic solution is captured.
In a second part, the behaviour of the periodic solution at Ra=3:4×105 is investigated and

quantitative data of various physical quantities are given on a set of grids. This value of the
Rayleigh number was selected as a test case at the session computational predictability of
natural convection �ows in enclosures of the �rst MIT Conference on Computational Fluid
and Solid Mechanics [3]. There is a large range of Rayleigh numbers around Ra=3:4×105
for which the solution remains periodic. Then, the qualitative behaviour of some solutions at
higher Rayleigh numbers are provided.

2. OUTLINE OF THE METHOD

2.1. Governing equations

The non-dimensional governing equations for the time-dependent thermal convection prob-
lem are the energy equation written in terms of temperature coupled to the Navier–Stokes
equations for incompressible �uids. The full description of the physical problem is given in
References [4; 5]. The di�erentially heated cavity problem is investigated in the 8:1 enclosure.
That means that the height is 8 times larger than the width and that the vertical walls are
maintained at a constant temperature in time. The non-dimensional governing equations in
primitive variables are set in the 2D domain �=(0; W )×(0; H) with aspect ratio H=W =8
and boundary @�=�left ∪�right ∪�bottom ∪�top as follow:

@tU −
√

Pr
Ra
�U +∇p=−U · ∇U + ey� in �×(0; T )

∇ ·U=0 in �×(0; T )

@t�− 1√
RaPr

��=−U · ∇� in �×(0; T )

(1)

where U=(u; v); p and � are the velocity, the pressure and the temperature, respectively, and
ey the unit vector in the vertical direction. The cavity is �lled with �uid of Prandtl number
Pr equal to 0.71 for air. The Rayleigh number is Ra=g��TL3=�� with g the gravitational
acceleration, � the coe�cient of thermal expansion, �T the temperature di�erence between
the hot and cold walls, � the kinematic viscosity and � the thermal di�usivity. The Rayleigh
number is the only parameter of the problem, and various regimes from steadiness to transition
can be obtained by increasing this number.
These equations are associated to the initial conditions

U=U0 and �=�0 in � (2)

and the boundary conditions

U=0 on @�×(0; T )
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Figure 1. A staggered cell.

�= 1
2 on �left×(0; T ); �=− 1

2 on �right×(0; T ) (3)

@y� = 0 on �bottom ∪Ttop×(0; T )

2.2. Numerical approximation

The thermal convection problem is solved in temperature and velocity–pressure by a split-step
in time: For �n and (Un; pn) given, �n+1 is the solution of

�n+1 − �n

�t
− 1√

RaPr
��n+1=−Un · ∇�n in �

�n+1= 1
2 on �left ; � n+1=− 1

2 on �right (4)

@y�n+1=0 on �bottom ∪�top
and (Un+1; pn+1) is the solution of

Un+1 −Un

�t
−
√

Pr
Ra
�Un+1 +∇pn+1=−Un · ∇Un + ey�n+1 in �

∇ ·Un+1=0 in � (5)

Un+1=0 on @�

All the terms on the left-hand side of these equations are discretized by second-order centred
�nite di�erences. The unknowns are given on a staggered uniform grid, the temperature and
the pressure are located at the centre of the cell, and the velocity components are located at
the middle of the sides as shown in Figure 1. This implies that the divergence free condition
is satis�ed on each cell in the following sense:

(∇ ·U )i; j ≈ ui+1=2; j − ui−1=2; j
�x

+
vi; j+1=2 − vi; j−1=2

�y

Let us point out to the reader that due to the use of staggered grids the discretization of the
di�usion terms at the boundary yields modi�ed formulas as

(@xx�)1; j ≈ ( 83�1=2; j − 4�1; j + 4
3�2; j)=(�x)

2 with �1=2; j= 1
2 on �left
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Figure 2. L DtL Factorized matrix.

The advective terms which appear on the right-hand side of (4) are discretized by a third-
order Murman scheme. Precisely, the term u@x� is approximated by

(u@x�)i; j ≈ 1
3ui+1=2; j�i+1=2; j�+ 5

6ui−1=2; j�i−1=2; j�− 1
6ui−3=2; j�i−3=2; j� if ui−1=2; j¿0

+ 1
3ui−1=2; j�i−1=2; j�+ 5

6ui+1=2; j�i+1=2 ;j�− 1
6ui+3=2; j�i+3=2; j� if ui+1=2; j¡0

where �i−1=2; j�=(�i; j − �i−1; j)=�x, and the term v@y� is discretized in the same way.
The convection terms in Equation (5) are also approximated by a third-order Murman

scheme. For instance

(u@xv)i; j−1=2 ≈ 1
3ui+1=2; j−1=2�i+1=2; j−1=2v+ 5

6ui−1=2; j−1=2

×�i−1=2; j−1=2v− 1
6ui−3=2; j−1=2�i−3=2; j−1=2v if ui−1=2; j−1=2¿0

+ 1
3ui−1=2; j+1=2�i−1=2; j+1=2v+ 5

6ui+1=2; j+1=2

×�i+1=2; j+1=2v− 1
6ui+3=2; j+1=2�i+3=2; j+1=2v if ui+1=2; j+1=2¡0

where ui+1=2; j−1=2 is obtained by linear interpolation. The other terms are discretized in the
same way.
The discrete solution of the thermal equation (4) is obtained by the incomplete Cholesky

conjugate gradient method. The matrix of the linear system associated to problem (4) is a
symmetric pentadiagonal matrix, but the incomplete Cholesky factorization is performed on
an 11 diagonals matrix as shown in Figure 2. This factorization improves the e�ciency of
the incomplete Cholesky conjugate gradient on the original matrix by a factor 3.
While the Navier–Stokes equations are solved by means of a multigrid method with a cell-

by-cell Gauss–Seidel relaxation smoother. The �ve unknowns for U and p of each cell are
strongly coupled and solved simultaneously (see for instance [6; 7] for more details). As the
temperature gradient is in the X -direction, we take a �ner space-step in that direction than
in the Y -direction. Namely on the domain (0; 1)×(0; 8) the coarsest grid is a 5×25 mesh.
Then we build a sequence of grids by re�ning by two in each direction, so the second grid
is a 10×50 mesh and so on. The computations are presented on �ne grids up to 320×1600
(see Table I). The stopping criteria are based on the residuals that must be less than 10−6

and 10−5, respectively, for Equations (4) and (5). No tricks of the trade are used to stabilize
the computational process. But due to the explicit treatment of the non-linear terms a CFL
condition is required.
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Table I. Successive grids for the multigrid resolution.

Grids Number of points �x �y

1 5×25 0.2 0.32
2 10×50 0.1 0.16
3 20×100 0.05 0.08
4 40×200 0.025 0.04
5 80×400 0.0125 0.02
6 160×800 0.00625 0.01
7 320×1600 0.003125 0.005

Table II. Co-ordinates of time-history points.

Points X -co-ordinate Y -co-ordinate

1 0.181 7.370
2 0.819 0.630
3 0.181 0.630
4 0.819 7.370
5 0.181 4.000

2.3. Physical data

A series of physical data are recorded at the following time-history points (Table II). Due to
the staggered grids it is not always possible to get exactly the right value of the co-ordinates,
so we choose the closest point.
The vorticity is de�ned as !=@xv−@yu, and the stream function  as u=@y and v=−@x 

with  =0 on the walls. This last quantity is computed directly by integration from the walls.
To measure the skew symmetry of the temperature (see Reference [5]), the skewness is

computed as

�12=�1 + �2 (6)

where �1 and �2 denote the temperature at time-history points 1 and 2, this parameter should
be zero for a skew-symmetric temperature �eld.
We de�ne also

�Pij=Pi − Pj

where i and j indicate the time-history points.
The evaluation of Nusselt numbers are performed for each wall:

Nu(x=0; t)=
1
H

∫ H

0
@x�(0; y; t) dy; Nu(x=L; t)=

1
H

∫ H

0
@x�(L; y; t) dy

In addition, the kinetic energy and the enstrophy provide useful metrics. That is

‖U‖=
√
1
2A

∫
A
U ·U dA (energy)
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and

‖!‖=
√
1
2A

∫
A
!2 dA (enstrophy)

where A is the area of the enclosure.
Finally, for all time-dependent computations, the average are computed, for a generic vari-

able �=u; v; �; Nu; ‖U‖; ‖!‖, as

	�=
1
T

∫ t+T

t
�(x; y; t) dx dy

3. LINEAR STABILITY

3.1. Linear problem

We are interested in this section in the stability of the steady solution. In other terms, how
far can a steady-state solution be observed physically? To answer this question we propose to
compute the �rst Lyapunov exponent of the linearized system. We thus assume that a small
perturbation (V; q; �) is added to the steady solution (US; pS; �S) of system (1). The stability
study consists in looking at the behaviour of the perturbation along time. This behaviour is
driven by the largest real part of the eigenvalues of the linearized problem. If the steady
solution is stable, the perturbation goes to zero when t goes to in�nity as e	1t where 	1 is
the �rst Lyapunov exponent. Thus, 	1 is de�ned by using [8]:

	1= lim
t→+∞

Log ‖(V (t); �(t))‖
t

using the L2 norm. Using the fact that (US; pS; �S) is a steady-solution, we have to solve the
simpli�ed linear problem:

@tV −
√

Pr
Ra
�V +∇q=−US · ∇V − V · ∇US + ey� in �×(0; T )

∇ · V =0 in �×(0; T )

@t� − 1√
RaPr

��=−US · ∇� − V · ∇�S in �×(0; T )

V =V0 and �=�0 in �

V =0 on @�×(0; T )
�=0 on �left ∪�right×(0; T )
@y�=0 on �bottom ∪�top×(0; T )

(7)

where the non-linear terms V · ∇V and V · ∇� are neglected.
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3.2. Steady solution analysis

Problem (7) is solved exactly in the same way that the initial problem (1). The only di�culty
is that the numerical solution (V n; �n) at time n�t becomes very small for large n. So, the
solution is normalized at each time iteration by setting (V n

0 ; �n
0)=(V

n; �n)=‖(V n−1; �n−1)‖ and
the Lyapunov exponent is approximated by

	n
1 =

∑n−1
i=0 Log ‖(V i

0 ; �
i
0)‖

n�t

if we take ‖(V0; �0)‖=1. Here the Euclidean norm is used. For low Rayleigh numbers the
convergence of the sequence 	n

1 is quite fast. But closer the Rayleigh number is to the critical
Rayleigh number slower is the convergence of the sequence 	n

1 and longer must be the
simulation time. In all cases the sequence ‖(V n; �n)‖ converges monotonically to zero and
the sequence 	n

1 converges monotonically to 	1 by lower values. To control the algorithm,
we require that the norm of the solution (V n; �n) is less then 10−10. This is achieved rapidly
for Ra=10+3 but is obtained for very large times T when the Rayleigh number is larger as
shown in Table III.
On grid �ve 80×400 the steady solution is stable until Ra62:5×105. At Ra=2:8×105 a

slightly periodic solution has been found on this grid whereas on grid six 160×800 there is
a stable steady solution (see Figure 3).

1900 1920 1940 1960 1980 2000
time

0.265

0.27

0.275

0.28

0.285
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m
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tu
re

grid 5
grid 6

Figure 3. Temperature history at Ra=2:8×105 on the grid 5 at point (0.18125, 7.37)
and on the grid 6 at point (0.178125, 7.375).

Table III. Evolution of the Lyapunov exponent, with Rayleigh number.

Ra 10+3 10+4 10+5 2×10+5 2:5×10+5 2:8×10+5

T 60 185 453 623 915 3107
	1 −0:38 −0:12 −0:050 −0:036 −0:025 −0:008
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Until Ra=2:0×105 the computations of Lyapunov exponents are performed on grid �ve
but for higher Rayleigh numbers the computations need a �ner grid. A test for Ra=2:5×105
shows that the value of 	1 is the same on grids �ve and six. At Ra=3:0×105 a slightly
periodic skew-symmetric solution has been found on grid six which becomes more complex
with a better resolution on grid seven 320×1600 as we shall see in the next section. These
numerical tests suggest an estimate of the critical Rayleigh number between Ra=2:8×105
and Ra=3:0×105. A polynomial extrapolation of the curve obtained gives a value close to
Ra=2:9×105. We can see also in Table III that the Lyapunov exponent is very close to
zero for such a value. Then, for Rayleigh numbers above the critical Rayleigh number stable
unsteady solutions are captured. They are discussed in the next section.

4. NUMERICAL RESULTS FOR UNSTEADY SOLUTIONS

4.1. Results around the critical Rayleigh number

As we have seen in the previous section the solution is stationary until Ra=2:8×105. We ob-
serve that the mean value of the temperature at the point 1 decreases when the Rayleigh num-
ber increases even for unsteady solutions (see in Figure 4). Computations on two consecutive
grids show that the grid convergence is almost achieved as can be seen in
Figure 4.
At Ra=3:0×105 a non-skew-symmetric periodic solution is captured. Indeed, we can see in

Figure 5 that the skewness is not zero on grid seven, it is a periodical function with a Fourier
amplitude of 10−3 and a period of 3.7. In addition, the temperature history (Figure 5) and
the phase portrait (Figure 6) show clearly the presence of two frequencies in the spectrum.
Then, by increasing the Rayleigh number, a skew-symmetric periodic solution is found for a
wide range of Rayleigh numbers.
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Figure 4. Temperature history for various Rayleigh numbers on grids 5 and 6 at the �rst point.
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Figure 5. Temperature (left) and skewness (right) history at Ra=3:0×105 on grid 7 at the �rst point.
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Figure 6. Phase portrait at Ra=3:0×105 on grids 6 and 7 at the �rst point.

4.2. Results for Ra=3:4×105
For comparison with the results presented in the special session at the �rst MIT confer-
ence, we propose to give some physical quantities at Ra=3:4×105 which is a value for
which the skew-symmetric periodic solution is well established. These results at Ra=3:4×105
are listed below on four consecutive Cartesian grids of 40×200, 80×400, 160×800 and
320×1600 points in order to show the grid dependence. The time-history points used in
this section correspond to the closest middle points of the staggered grid to the time-history
points given in Table II. For instance the �rst point (0.181, 7.37) is replaced, respectively, by
(0.1875, 7.38), (0.18125, 7.37), (0.178125, 7.375) and (0.179688, 7.3725) on the four grids.
Unfortunately, the di�erence with the exact values induces some discrepancies in the re-
sults. We can see in Figure 7 that the mean value and the period for the temperature
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Figure 7. Temperature history for Ra=3:4×105 on the 40×200 grid at point (0.1875, 7.38), on the
80×400 grid at point (0.18125, 7.37), on the 160×800 grid at point (0.178125, 7.375).

Figure 8. Fourier analysis of time histories with 60 points per period at Ra=3:4×105 on grids 4 and 5.

are di�erent on the coarsest grid whereas the grid convergence is almost achieved on two
�ner grids. This can be seen also by looking at the results in Figures 8 and 9. The grid
320×1600 give the best results as in particular the skewness is very low but the conver-
gence is almost achieved on the previous grid. So, the computations of the next section
are performed on the grid 160×800. We believe that this grid realize a good compro-
mise between performance and accuracy and can give good qualitative behaviour of the
solutions.
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Figure 9. Fourier analysis of time histories with 60 points per period at
Ra=3:4×105 on grids 6 and 7.
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Figure 10. Temperature (left) and skewness (right) history for various
Rayleigh numbers on grid 6 at the �rst point.

4.3. Results for higher Rayleigh numbers

Then, the solution is still a periodic one for Rayleigh number between 3:4×105 and 4:0×105
whatever the initial condition is (left-hand side of Figure 10).
This time the period decreases as the Rayleigh number increases. Moreover, the solution

at Ra=4:0×105 is non-skew-symmetric as can be seen on the skewness history shown on
the left-hand side of Figure 10. We observe that for the steady solution until Ra=2:8×105,
the phase portrait is reduced to one point. Then for higher values of the Rayleigh number, in
particular 3:4×105 and 4:0×105 the solution is purely periodic and the phase portrait for a
long simulation time corresponding to 50 periods is a single closed curve. Whereas for a value
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Figure 11. Phase portrait for various Rayleigh numbers on grid 6 at the �rst point.

Figure 12. Temperature isolines for increasing Rayleigh numbers at time 1000 on grid 6. The drawn
isolines go from −2 to 2 by step 0.02.
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Figure 13. Vorticity isolines for increasing Rayleigh numbers at time 1000 on grid 6. The drawn isolines
are: −40; −30; −20; −15; −12, −10; −9; −8; −7; −6; −5; −4; −3, −2; −1; −0:1, 0.1, 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40.

just above as Ra=6:0×105 the phase portrait indicates the presence of more frequencies in
the spectrum (see Figure 11).
For higher values of the Rayleigh number, namely Ra=3:0×106, and Ra=3:0×107, a

more complex solution is found. Indeed, we can see that the solution exhibits more and more
activity along the vertical walls. This activity starts slightly at Ra=6:0×105 to give a non
periodic solution close to the periodic solution and then increases to give a chaotic solution
at Ra=3:0×106 and a fully developed turbulent solution at Ra=3:0×107. The isolines of
Figure 12 for the temperature and Figure 13 for the vorticity illustrate the increasing of vortex
dynamics with the Rayleigh number. The vortices coming from the boundary layers are �rst
con�ned in thin slices and then enter the whole domain as the Rayleigh number increases
(see animation on the web site http:==www.math.u-bordeaux.fr=MAB=DNS). In Figure 14, is
plotted the average time enstrophy for various Rayleigh numbers. The value increases from
the constant value 2.86 for the periodic solution to the mean values 2.99, 3.34 and 3.83 for
the three other solutions. We can see in addition that the value is not constant anymore when
the transition starts and that the amplitude increases with the Rayleigh number.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1093–1107



1106 C.-H. BRUNEAU AND M. SAAD

1500 1600 1700 1800 1900 2000
time

1.5

2

2.5

3

3.5

4

4.5

en
st

ro
ph

y

3.4e+05
6.0e+05
3.0e+06
3.0e+07

Figure 14. Evolution of average time enstrophy for various Rayleigh numbers on grid 6.

4.4. Computational resources

All the calculations of this paper have been performed on one processor of a Compaq ES40.
The performances are given on the grid 80×400.

• Clock rate 667 MHz
• Total memory 2000 MBytes
• specfp95 82.7
• CPU per grid point per time step 3:6 �s
• Memory used 12 MBytes

5. CONCLUSIONS

The qualitative behaviour seems to be well captured by the multigrid method presented above.
The main points of this approach are the explicit treatment of convection terms and their
discretization by a third-order Murman scheme. The grid convergence is almost achieved on
the 160×800 mesh where the computations are quite e�cient. The proposed method allows to
show that the solution can be stationary, skew-symmetric and periodic, non skew-symmetric
and periodic, transitory, chaotic and even turbulent by increasing the Rayleigh number. An
analysis of the linear stability, by the computation of Lyapunov exponent, allows to give an
estimate of the critical Rayleigh number which seems to be quantitatively relevant.
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